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Abstract

This thesis presents an alternative method for the detection of MIMIC mod-

els. Previous methods (such as factor analysis) suffer from a number of signif-

icant flaws and limitations, which the new method (a causal search algorithm)

doesn’t suffer. A new algorithm is introduced, followed by a worked-through

example of its application. Discussion focuses on some of the limiting assump-

tions the algorithm currently requires. Finally, recommendations for future work

address improvements of the algorithm, as well as its applicability.



Chapter 1

Introduction

MIMIC (an acronym for Multiple Indicators, Multiple Causes) models are a class

of models positing latent, unrecorded, common causes. The causal structure

consists of three components: a set of latent variables (not observed), a set of

inputs (observed variables that act as causes of latent variables), and a set of

outputs (observed variables that are caused by latent variables). MIMIC models

are often used in cases where there are believed to be unobserved variables

acting as causes on either some observed variables (i.e., outputs) or other latent

variables.

The applications of MIMIC models are widespread, ranging from economics,

to psychology, and even public health. Advocates of MIMIC models emphasize

their usefulness in simultaneously assessing multiple dimensions of complex so-

cial issues.

For example, Lester (2008) applied a MIMIC model to examine factors re-

lated to successful settlement of immigrants to Australia. Groups of interest

were economic immigrants, non-economic immigrants, and those who were not

labor force participants. The study included two waves of immigrants (4867 and
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3538 individuals, respectively). Analyses included two latent constructs, repre-

senting successful settlement at each of two time periods. In the measurement

model indicators of successful settlement included level of satisfaction with life

in Australia, mental health, encouraging others to migrate to Australia, and

believing that their decision to immigrate was right. The structural model in-

cluded economic and labor market factors for each time period, and a formative

model included time-invariant variables (e.g., gender and status of the person

at time of entry).

Several studies have used MIMIC models to estimate the size of the hidden

economy since factors such as GDP and unemployment rates do not give a

comprehensive picture of a nation’s economic conditions. Bühn and Schneider

(2008) developed a MIMIC model and tested its ability to examine both the

size and development of economic loss attributed to the shadow economy in

France. Giles (1999) estimated a MIMIC model to uncover a time-series view of

the hidden economy in New Zealand. Tedds (1998) developed a MIMIC model

to estimate the hidden economy in Canada over the period of 1976 to 1995,

suggesting the model represented approximately 15% of the GDP. Defending

the use of MIMIC models in estimating the shadow economy, DellAnno and

Schneider (2006) provided extensions of standard MIMIC models and argued

that their potential is undervalued in the field of economics.

Ŕıos-Bedoya and colleagues utilized MIMIC models to determine the strength

of association between current smoking status (i.e., current daily smokers or

those who had exposure but no pattern of regular smoking) and two latent

constructs (pleasant and unpleasant early smoking experiences) in a sample of

458 participants (Ŕıos-Bedoya et al., 2009). The overall MIMIC model included

measurement and structural components. In the study’s measurement model,

categorical responses to items from the Early Smoking Experiences (ESE) ques-
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tionnaire (which assessed response to early experimentation with cigarettes)

were considered to be indicators of the two unobserved latent constructs. The

structural model examined the association between covariates of interest (i.e.,

race, depression history, sex, age of first cigarette, and current smoking status)

and the unobserved latent constructs.

MIMIC models are usually specified a priori. That is, an investigator as-

sumes she knows all of the relevant causal relations and the only function of

the data is to enable estimation of parameters and to confirm the hypothesis

by statistical tests. When such tests fail to confirm the a priori model, another

model may be proposed, more or less in one at a time fashion, roughly as con-

ceived by Karl Popper. The chief automatic search aid used is factor analysis,

which is supposed to locate the latent variables and which “output” variables

they influence. As an alternative method for the detection of MIMIC models, I

propose a causal search algorithm (the detect.MIMIC algorithm) that does not

suffer from the concerns of previous ad hoc methods used in discovering MIMIC

models.

Chapter 1 introduces the area of study. Chapter 2 provides a brief de-

scription of MIMIC models, followed by a discussion of the limitations existing

methods suffer, as well as examples of the use of MIMIC models in various fields.

In Chapter 3 I present a survey of existing work from which the new method

is derived. Chapter 4 describes the assumptions underlying the detect.MIMIC

algorithm and provides a detailed discussion of relevant concepts, as well as a

description of the proposed algorithm. Results of tests performed on the algo-

rithm are represented through a worked through example in Chapter 4, followed

by a section on assumptions and limitations of the algorithm. Chapter 5 pro-

vides a summary of the project as well as identifying two areas for future work,

that is, improvements in the algorithm and improvements in its applicability.
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Chapter 2

Motivation

2.1 Place in the Method of Science

Frequently, when a scientist attempts to construct a model of how some natural

(or manmade) phenomena functions, a number of a priori assumptions must

be made. Some of these assumptions are unavoidable (such as using GDP as

a measure of the size of the economy when no other data exists). Others,

however, are avoidable, provided the data is allowed to speak for itself. As

there is always some risk involved when making assumptions, it is (generally)

preferable to minimize the number of unnecessary assumptions when creating a

scientific model. Happily, this is exactly what a causal search algorithm does.

Another property of causal search algorithms, desirable in model construc-

tion, is the explicitness of its methodology. More ad hoc methods (whose mod-

eling decisions are frequently opaque) tend to leave a great deal of information

on the cutting-room floor. The assumptions and evidence that led a researcher

to believe in the truth of a causal relation are left in the ether. In contrast,

causal search algorithms follow an explicit (and public) process whose validity
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can be thoroughly tested. Causal search algorithms provide a straightforward

method for checking already existing causal models (such as those popular in

the current literature). Data, both new and old, can be fed into the algorithm,

producing results that can be used to determine the set of possible models that

could pass a collection of statistical tests. Finally, the proper automation of the

procedure invites, and often forces, clarity about which aspects of a model are

provided only by an investigator’s assumptions or theories or conjectures, and

which parts are data driven.

2.2 MIMIC Models

MIMIC models are a kind of causal structure, that can be represented by a class

of directed, acyclic graphs. Although use of the term “MIMIC” varies in the

literature, I will assume all models considered have the following features:

1. A set of independent input variables whose values occur in the data.

2. A set of output variables whose values occur in the data.

3. If there exists a latent variable on a directed path between input and

output variables, then it must have an outdegree of at least 2.

There are also several other additional (optional) characteristics:

4. Output variables are independent of one another conditional on their la-

tent and input common causes.

5. Every input influences an output through a latent path.

6. Every latent has at least n outputs.

In addition, applications of MIMIC models typically make distributional

assumptions, for example that the joint distribution of the variables is Gaussian,
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the relation is linear, and each measured variable and each latent common cause

has specific sources of variance that are independent of the sources of variance

specific to other variables.

L1

x3 x4

x1 x2

Figure 2.1: Illustration of a MIMIC model.
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Chapter 3

Background

Predicting outcomes from the study of available data has been of interest to

philosophers and scientists since the distant past (e.g., Hume, Bacon, etc). Such

causal relationships require both a temporal order (i.e., a cause must precede

its effect; Reichenbach, 1956) and consideration of spurious associations (i.e.,

covariance or correlation that merely appears to be causal). Sober (1998) while

not employing MIMIC models per se, presented an argument that can help

determine when such causal models are warranted. When considering the choice

between models that address only cause and effect (black box inference models)

or those that include intervening variables, he argued that the choice of models

should be driven by the data, not simply by parsimony. Models that include

unobserved intervening variables (i.e., those reflecting latent constructs) should

be used when there is a claim of probabilistic dependence but the choice of

an intervening variable also requires that it have at least two effects. Utilizing

existing psychological studies Sober considered the latent constructs of stimulus

generalization, response generalization, and the theory of mind (i.e., internal

states) as explanations of how the effects from two experiments can be related.
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Advances in computation, coupled with improved statistical techniques, have

enabled a systematic consideration of requirements for a study of causal rela-

tionships. However, determining causal structures between variables, including

unobserved (latent) variables, still poses challenges. To address these relation-

ships and enhance causal discovery, scholars have proposed the use of causal

graphs (e.g., Glymour et al. (2010); Pearl (2009); Scheines (1997); Spirtes et al.

(2000)).

3.1 Causal Graphs

The major concepts necessary to understand causal graphs are elucidated below.

An undirected path (Figure 3.1) is a connection between two nodes (in the

example below, x1 and x2).

x1 x2

Figure 3.1: Depiction of an undirected path.

A directed path (Figure 3.2), is interpretable in causal terms. In the example

below, node x1 is read as causing x2.

8



x1 x2

Figure 3.2: Depiction of a directed path.

It should also be noted that in the above Figure, x2 is referred to as a child

of x1.

There are three basic structures used in causal graphs: Forks, Chains, and

Colliders.

Forks (Figure 3.3) are made up of a center node with two or more children

(or effects).

x2

x1 x3

Figure 3.3: Illustration of a Fork.

Chains (Figure 3.4) are made up of a set of nodes, all of whom have a child,

except for the last node in the chain.
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x1 x2 x3

Figure 3.4: Illustration of a Chain.

Finally, Colliders (Figure 3.5) involve two (or more) nodes having a common

child. This structure is particularly relevant, as this structure is a naturally

occurring1 instance of d-separation.

x1

x2

x3

Figure 3.5: Illustration of a Collider.

Definition 3.1.1 (Causal Markov Condition). A node in an acyclic directed

causal graph is conditionally independent of its non-decedents, given its parents.

From the causal Markov condition, Pearl (2009) obtained an efficient method

for determining whether or not two variables are said to be independent.

D-separation is defined as follows:

1In other words, without conditioning on any set of variables, x1 is d-separated from x3
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Definition 3.1.2 (d-separation). Two nodes, X and Y , in a DAG (i.e., directed

acyclic graph) are d-separated by a set S of nodes not containing X or Y if and

only if all paths between X and Y are blocked by S. Otherwise, X and Y are

d-connected.

A path is said to be blocked if either (a) the path contains an intermediate

node that has been conditioned on and isn’t a collider (or a descendant of a

collider on the path), or (b) there is a collider on the path that hasn’t been

conditioned on and the collider hasn’t had one of its decedents conditioned on.

Here’s an example utilizing the implications of d-separation. Envision the

following Figure:

L1

x3 x4

x1 x2

Figure 3.6: Illustration of d-separation.

As x1 is d-separated from x2 (the only path between x1 and x2 is through

a collider), x1 is independent of x2 (i.e., x1 ⊥⊥ x2 ). However, conditioning on

11



x3 (a decedent of the collider) causes x1 to no longer be d-separated from x2.

As a result, x1 is no longer independent of x2 (i.e., x1 6⊥⊥ x2|x3 ). Contrast this

with x3 and x4 (which are not d-separated). x3 is not independent of x4, and

conditioning on x1, or x2 won’t change this.

3.2 Prior Work

Silva et al. (2006) created an algorithm intended to search for causal structures

(involving latent variables) in more general circumstances than my own. How-

ever, one assumption made in their paper (and necessary for their method to

work) requires that observed variables are not causes of unobserved variables.

My algorithm, while not as general as the one in Silva et al. (2006), does not

make such an assumption. Further, the Silva procedure is confined to linear

systems and a few other special distributions. I offer some proposals for search

methods that are essentially non-parametric.

3.3 Parametric Methods

A parametric method is any method that adds constraints to the relationships

in data beyond those imposed by the graph.

3.3.1 SEM

SEM (or structural equation modeling) is a commonly used method of repre-

senting causal relations between variables. It uses a set of equations to represent

causal relations. In these equations, each variable is represented by a function

composed of non-random variables, with an additional collection of error terms.

These errors are assumed to follow some joint probability distribution. The

choice of distribution for the errors is left up to the researcher.
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Using SEM to represent a model in causal search poses two important dif-

ficulties. The most important of these is the necessity of constructing a model

by hand. Second, SEM models are difficult to modify for alternative purposes.

As Judea Pearl mentions, graphical depictions (like circuit diagrams), can be

taken-up and modified by other researchers for purposes never imagined by the

model’s originator (Pearl, 2009). As the intention of causal search is to either

generate new models or check old models, flexible manipulation of a model is a

very desirable characteristic.

3.3.2 Factor Analysis

Factor analysis is a method of modeling data (X), by left multiplying a matrix

of principle components (w) with a matrix of data projected onto the prin-

ciple components in w. Any differences between X and the resulting matrix

multiplication are resolved by the inclusion of an error term, ε.

X = Fw + ε (3.1)

Two primary motivations drive the use of factor analysis:

1. Dimension Reduction

2. Inferring Causal Structures

Dimension reduction is generally intended for use in high dimensional prob-

lems, such as genomics. For instance, imagine a researcher has one hundred

different genomes (each corresponding to a single individual). Each of these

genomes contains thousands of genes. The researcher attempts to predict whether

or not an individual has a disease, using that individual’s genes. In order to use

standard methods (such as linear regression), the number of parameters (i.e.,

the number of genes) must be less than the number of observations (i.e., the

13



number of genomes). Under these conditions, factor analysis replaces the use

of specific genes, with the most explanatory factors (in this case, amalgams of

genes).

The other common motivation for using factor analysis is to infer causal

structures when some number of unobserved variables (i.e., latent variables)

act as causes on observed variables. This use started when Charles Spearman

observed that a number of different variables (specifically, children’s grades in

different subjects) followed a specific pattern of constraints2 on their correla-

tions. He then used this pattern to justify his claim that there exists a common

factor corresponding to general intelligence (which he named G). Spearman’s

observed pattern of correlations failed to hold in general, leading to modifi-

cations of Spearman’s method by his students. These modifications enabled

Spearman’s method to account for more than a single factor; however, they

were computationally unfeasible (Glymour et al., 1987). Later modifications by

Thurstone (1934) created a version of factor analysis that didn’t suffer the same

computational limitations.

Factor analysis suffers from a rather serious theoretical difficulty (even when

all of the assumptions necessary for factor analysis to work are met), often

referred to as the rotation problem (Shalizi, 2012). It involves the use of an

orthogonal matrix, used to rotate the original coordinate system. Illustrated

below:

Let m be an orthogonal matrix3. Begin by inserting an orthogonal matrix,

left multiplied by its transpose.

X = FmTmw + ε (3.2)

= αβ + ε (3.3)

2Known as the tetrad constraints
3a matrix (m) is orthogonal if mTm = I. Note that I is the Identity matrix
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Where α and β are the new versions of F and w (respectively).

This new factor model has the same number of latents, the same fit, and

has the same distributions as before the rotation. However, the rotation has

changed the structure reported by the previous factor model (Shalizi, 2012).

3.3.3 Tetrad Methods

Vanishing Tetrad differences (Spirtes et al., 2000)[pg. 149-150] can be used to de-

termine the number of latent variables under some conditions (such as linearity)

For instance:

If ρij is the correlation between variables i and j, then

ρ12ρ34 − ρ13ρ24 =

ρ14ρ23 − ρ12ρ34 =

ρ13ρ24 − ρ14ρ23 = 0

holds in Figure 3.7 (left), however, only ρ13ρ24 − ρ14ρ23 = 0 holds in Figure

3.7 (right).

L1

x1 x2 x3 x4

L1 L2

x1 x2 x3 x4

Figure 3.7: The structure on the left has three vanishing tetrad differences
whereas the structure on the right only has one.
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3.4 Nonparametric Methods

A method is nonparametric if it adds no constraints to the relationships in data

beyond those imposed by the graph.

3.4.1 EM Algorithm

The EM algorithm begins by making an initial guess for each parameter or

conditional probability in need of estimation. It then takes the guess for each

parameter, and finds the posterior distribution for the latent variables (the E

step). These posterior distributions are then used to calculate the complete-

data log likelihood function. Next, it finds the parameter values that maximize

the calculated log likelihood (M step). Then it repeats the E step using these

results (and the M step, using the results of the E step) until the parameter

estimates don’t change by very much (Bishop, 2006)[pg. 616].

The first major drawback to using the EM algorithm for causal modeling is

the amount of computing time needed to successfully complete the algorithm.

This amount of time varies, depending on the particulars of the problem being

attacked. The amount of time isn’t known in advance, and it is difficult to be

certain that the algorithm has successfully approximated the actual maximum

likelihood4.

This computational problem also becomes increasingly worse as the number

of parameters in need of estimation increases (this is known as the Curse of Di-

mensionality). As a result, the more latents believed to be in need of estimating,

the longer the algorithm takes to finish.

Finally, while the EM algorithm is generally used to cluster observations

according to the effect of some estimated latent variable(s), there are some

4It is possible that the maximum reported by the algorithm is not the true maximum, but
is instead merely a local maximum. There are some checks that can be done for this, (such as
choosing very spread-out starting points for the algorithm); however, doing so increases the
amount of computing time.
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instances of EM being used to discover latent variable structures (Elidan et al.,

2001). This version of the algorithm (referred to as the Structural EM), was

found to be highly unreliable when used for causal discovery in the presence of

latent variables (Tillman et al., 2008).
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Chapter 4

Method

This chapter gives a description of the detect.MIMIC algorithm, as well as the

assumptions necessary for the algorithm to function correctly.

4.1 Description of Method

4.1.1 Detect.MIMIC Algorithm

The following section contains a written description of the detect.MIMIC al-

gorithm. A step-by-step example is also included at the end. While software

applications often assume that the partition of measured variables into input

and output is already given, when the MIMIC assumptions (mentioned in Sec-

tion 2.2) are met that classification can be done automatically with the PC

algorithm, which also estimates which input variables influence which output

variables.

The PC algorithm (with depth set to zero) operates as follows:

1. Draw an undirected path from each variable to every other variable.

2. For every pair of connected variables, if the two variables are independent

18



of one another (without conditioning on any other variables) then remove

the undirected path connecting them.

3. For every pair of variables that are connected after step 2, if the pair of

variables remain independent of one another after conditioning on every

other variable adjacent to them, then remove the path connecting those

two variables.

Inputs and Outputs

Run the PC algorithm on the data with depth (i.e., the maximal size of the

conditioning set) set to zero. In the resulting graph, all nodes (variables) with

an indegree of zero are members of the input set. All other variables are members

of the output set.

Clustering and Determining Arrow Structure

Using the graph found with the PC algorithm, hypothesize a latent variable

between every subset of inputs and outputs, where the subset of outputs all

have paths from the same subset of inputs. Next, draw a path from the input

set of each latent to the latent. Having done this, we can now determine the

arrow structure between the latents.

For each latent variable, if the input set of one latent (IN(L1)) is a proper

subset of the other latent’s input set (IN(L2)), then draw a path from the first

latent to the second latent. Also, remove the proper subset from the input set

of L2. Then draw paths from each input to its respective latent.

Finally, only draw a path from a latent to an output variable if that output

is not also a member of the output set of some latent descendent.

19



4.1.2 A Worked Through Example

The algorithm is perhaps best illustrated by walking through a simple example.

Take the following graph (Figure 4.1), which the algorithm will attempt to

discover:

L1 L2

x3 x4 x7 x8

x1 x2 x5 x6

Figure 4.1: An example of a structure to be discovered.

Step 1: Finding Inputs and Outputs.

Running the PC algorithm produces the following graph:

20



x1

x4

x3

x7

x8

x2

x5 x6

Figure 4.2: Structure reported by the PC algorithm.

At this point, we know that the inputs are x1, x2, x5 and x6, as each of

these variables have an indegree of zero.

We also know that the outputs are x3, x4, x7 and x8, as each of these vari-

ables has an indegree greater than zero.
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Step 2: Clustering and Determining Arrow Structure.

Continuing the example, we can see in Figure 4.2, there are two sets of

outputs with common inputs. Namely, the set [x1, x2, x5, x6], and the set [x1,

x2]. Therefore we posit the existence of two latents, with each latent placed

between one of the two input sets (see Figure 4.3).

L1 L2

x3 x4 x7 x8

x1 x2 x5 x6

Figure 4.3: Introduction of the latents.

The algorithm now notes that [x1, x2] is a proper subset of [x1, x2, x5, x6].

It, therefore, draws a path from L1 to L2, as well as paths from the input sets

to their respective latents (see Figure 4.4).

22



L1 L2

x3 x4 x7 x8

x1 x2 x5 x6

Figure 4.4: Drawing the paths amongst latents.

Finally, the algorithm notes that in Figure 4.2, the output set of [x1, x2]

that is not part of the output set for [x5, x6] consists of [x3, x4]. It therefore

draws paths from L1 to [x3, x4]. As the only outputs left unclustered belong to

the output set of [x5, x6], paths are drawn from L2 to [x7, x8] (giving Figure

4.5).
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L1 L2

x3 x4 x7 x8

x1 x2 x5 x6

Figure 4.5: Final graph produced by the algorithm.

4.1.3 Assumptions and Limitations

Despite the search space being restricted to MIMIC models, there are some

structures that are indistinguishable when using the detect.MIMIC algorithm.

Unfortunately, the complete class of indistinguishability structures for MIMIC

models is not presently known. Therefore, some restrictions have been made

about allowable structures beyond those imposed by the definition of a MIMIC

model, so as to further reduce the search space to a manageable size.

First, we attempt to identify only models with singly connected graphs, i.e.,

between any two variables there is at most one directed path.

Definition 4.1.1 (Minimal Model). A model consisting of a graph and distri-

bution pair satisfying the Markov condition is minimal provided the removal
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of any edge from the graph results in a graph/distribution pair that does not

satisfy the Markov condition.

We also add an additional constraint. Namely, the simplicity criterion.

Definition 4.1.2 (Simplicity Criterion). Of any indistinguishable set of models,

chose the one that has the fewest edges.

In practice, this means that although graphs in Figures 4.6 and 4.7 satisfy

the same constraints, given data from either of these structures the DETECT

procedure would identify the second graph, Figure 4.7, rather than the first,

because a single latent is introduced for every class of output variables and

each input has a unit outdegree. Although I do not pursue the question here

it would seem straightforward to characterize the data-equivalent, singly con-

nected graphs that differ in the respects illustrated by Figures 4.6 and 4.7, and

I pose that as a research problem.

Finally, I also require that the structure be singly connected.

Definition 4.1.3 (Singly Connected). A structure is singly connected if there

at most a single path connecting any pair of nodes.
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L1

x4 x5

L2

x6 x7

L3

x8 x9

x1 x2 x3

Figure 4.6: An example of a structure indistinguishable from Figure 4.7.
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L1 L2 L3

x4 x5 x6 x7 x8 x9

x1 x2 x3

Figure 4.7: An example of a structure indistinguishable from Figure 4.6.

Additionally, the third restriction (i.e., the structure must be simply con-

nected) allows us to exclude the structure in Figure 4.8, which has multiple paths

between L2 and x8. These multiple paths create a graph whose observable in-

dependence relations are identical to those in Figure 4.6 (i.e., the graphs are

both members of the same equivalence class), preventing us from determining

which structure is correct.
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L1

x4 x5 x6

L2 L3

x8x7 x9

x1 x2 x3

Figure 4.8: An example of a multiply connected structure
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Chapter 5

Conclusion

5.1 Summary

At this point, the detection of MIMIC models is in a better state than it pre-

viously was. Instead of having no reliable methods, there is now an incomplete

(but reliable within its restrictions) method for detecting MIMIC models. This

new method is built on a thoroughly researched algorithm (the PC algorithm);

hence, there is already a body of work that (with some adjustments) can be

applied to understanding the limitations and capabilities of the new algorithm.

5.2 Future Work

Future work can be divided into two main subsections, improvements of the

algorithm, and improvements in the applicability of the algorithm.

Currently, the proposed algorithm cannot handle all MIMIC models in their

full generality, as the indistinguishability classes for MIMIC models are presently

unknown. In order to create a more general form of the algorithm, it will be

necessary to determine these classes.
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Other work of interest involves the inclusion or combination of detect.MIMIC

in (or with) other more general algorithms (such as the PC algorithm). Ad-

ditionally, a formal estimate of algorithmic complexity, as well as systematic

analyses of the algorithm’s consistency and efficiency are rather important for

understanding the applicability of the algorithm in practical data analysis.
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